水溶性维生素
2012-09-09 19:39:20 来源:37度医学网 作者: 评论:0 点击:
维生素B12分子中的钴(可以是一价、二价或三价的)能与-CN、-OH、-CH3或5′-脱氧腺苷等基团相 连,分别称为氰钴胺、羟钴胺、甲基钴胺和5′-脱氧腺苷钴胺,后者又称为辅酶B12。其实,甲基钴胺也是维生素B12的辅酶形式。维生素B12的两种辅 酶形式一一甲基钴胺和5′-脱氧腺苷钴胺在代谢中的作用各不相同。
甲基钴胺(CH3·B12)参与体内甲基移换反应和叶酸代谢,是N5-甲基四氢叶酶甲基移换酶的辅酶。此酶催化N5CH3·FH4和同型半胱氨酸之间不可逆的甲基移换反应,产生四氢叶酸和蛋氨酸。
图3-3 维生素B12的结构
N5-CH3-FH3来源于N5,N10-CH2-FH4的还原(参看蛋白质代谢一章中“一碳基团”的代 谢),此还原反应在体内也是不可逆的。由dUMP甲基化生成dTMP时,只能利用N6,N10-CH2-FH4供给甲基,而不能利用N5- CH3·FH4。因此,必须通过上述甲基移换反应使FH4“再生”,从而保证dTMP的不断合成。
图3-4 维生素B12和叶酸代谢以及与DNA合成的关系
由上图可见,甲基钴胺的作用是促进叶酸的周转利用,以利于胸腺嘧啶脱氧核苷酸和DNA的合成,如果缺乏维生素 B12,则叶酸陷入N5-CH3·FH4这个“陷井”而难以被机体再利用,犹如缺乏叶酸一样,所以维生素B12缺乏所引起的贫血,同缺乏叶酸一样,也是 巨幼细胞性大红细胞贫血。
上述以CH3·B12作辅酶的甲基移换反应不仅促进FH4的再利用,而且还促进蛋氨酸的再利用(蛋氨酸→同型 半胱氨酸→蛋氨酸,参看氨基酸的代谢)。蛋氨酸经活化后可作为甲基供体促进胆碱和磷脂的合成,有利于肝脏的代谢。所以临床上把叶酸和维生素B12作为治疗 肝脏病的辅助药物,除了考虑到它们的促核酸与蛋白质合成作用外,还考虑到它们有保护肝脏,防止发生脂肪肝的作用。
5′-脱氧腺苷钴胺(5′-dA·B12)是甲基丙二酰辅酶A变位酶的辅酶,参与体内丙酸的代谢。
体内某些氨基酸、奇数碳脂肪酸和胆固醇分解代谢中可产生丙酰CoA。正常情况下,丙酰COA经羧化生成甲基丙 二酰CoA,后者再受甲基丙二酰CoA变位酶和辅酶B12(即5′-dA·B12)的作用转变为琥珀酰CoA,最后进入三羧酸循环而被氧化利用(参看糖代 谢)。
当维生素B12缺乏时,由于这些代谢途径受阻,将导致甲基丙二酰COA和丙酰COA的堆积,结果引起甲基丙二 酰COA水解,产生甲基丙二酸由尿排出。所以维生素B12缺乏病人尿中出现甲基丙二酸,这可作为一个很灵敏的诊断指标。据分析,患者脑脊液中甲基丙二酸的 浓度大于血浆中浓度,表明代谢障碍主要发生在神经组织。另外,同位素示踪实验发现,堆积的丙酰CoA掺入到病变的神经髓鞘,构成异常的奇数碳脂肪酸 (15C和17C),这可能与神经髓鞘的退行性变有关。因为5′-dA-B12所参与的代谢途径与叶酸无关,所以维生素B12缺乏患者除了造血系统的症状 与叶酸缺乏相似外,尚有其独特的神经症状。维生素B12缺乏引起丙酸CoA代谢障碍可用下列图解表示。
图3-5 维生素B12缺乏对丙酰CoA-代谢的影响
维生素B12广泛存在于动物性食品中,人体对它的需要量甚少(每日仅需2?微克),而体内贮存量很充裕,所以 因摄入不足而致维生素B12缺乏者在临床上比较少见。但是维生素B12的吸收与正常胃粘膜分泌的一种糖蛋白密切相关,这种糖蛋白叫做内因子 (intrinsic factor简写IF)。维生素B12必须与内因子结合后才能被小肠吸收。这一方面是由于维生素B12的吸收部位在回肠下段,只有维生素B12与内因子 结合成IF-B12复合物才能被肠粘膜上的受体接纳;另一方面二者的结合有相互保护的作用;内因子保护维生素B12不被肠道细菌所破坏;维生素B12保护 内因子不被消化液中的酶所水解。某些疾病如萎缩性胃炎、胃全切除的病人或者先天缺乏内因子,均可因维生素B12的吸收障碍而致维生素B12的缺乏。对这类 病人只有采取注射的方式给予维生素B12才有效。
二、维素素C和P
维生素C又名抗坏血酸(ascorbic acid),它是含有内脂结构的多元醇类,其特点是具有可解离出H+的烯醇式羟基,因而其水溶液有较强的酸性。维生素C可脱氢而被氧化,有很强的还原性, 氧化型维生素C(脱氢抗坏血酸dehydroascorbic acid)还可接受氢而被还原。
维生素C含有不对称碳原子,具有光学异构体,自然界存在的、有生理活性的是L-型抗坏血酸。
维生素C在酸性水溶液(pH<4)中较为稳定,在中性及碱性溶液中易被破坏,有微量金属离子(如Cu++、 Fe+++等)存在时,更易被氧化分解;加热或受光照射也可使维生素C分解。此外,植物组织中尚含有抗坏血酸氧化酶,能催化抗坏血酸氧化分解,失去活性, 所以蔬菜和水果贮存过久,其中维生素C可遭到破坏而使其营养价值降低。
大多数动物能够利用葡萄糖以合成维生素C,但是人类、灵长类动物和豚鼠由于体内缺少合成维生素C的酶类,所以 不能合成维生素C,而必须依赖食物供给。食物中的维生素C可迅速自胃肠道吸收,吸收后的维生素C广泛分布于机体各组织,以肾上腺中含量最高。但是维生素C 在体内贮存甚少,必须经常由食物供给。维生素C在体内分解可以产生草酸和苏阿糖酸(threonic acid)。
维生素C具有广泛的生理作用,除了防治坏血病外,临床上还有许多应用,从感冒到癌症,维生素C是应用最多的一种维生素。但是其作用机理有些还不十分清楚,从使用的剂量来看,有越来越大的趋势,已超出了维生素的概念,而是作为保健药物使用了。
已知维生素C参与体内代谢功能主要有以下几个方面。
(一)参与体内的羟化反应
维生素C对于许多物质的羟化反应都有重要作用,而羟化反应又是体内许多重要化合物的合成或分解的必经步骤,例如胶元的生成、类固醇的合成与转变,以及许多有机药物或毒物的生物转化等,都需要羟化作用才能完成。
1.胶元的合成
当胶元(collancg)合成时,多肽链中的脯氨酸(Pro)和赖氨酸(Lys)残基需要分别被羟化成为羟 脯氨酸和羟赖氨酸残基(详见第十五章)。维生素C是此种羟化反应必需的辅助因素之一,因为在羟化反应中,不仅需要相应的羟化酶,而且还需要O2、Fe++ 和a-酮戊二酸等,维生素C有助于维持Fe++的还原状态,并能激活羟化酶。
胶原是细胞间质的重要成分,因此,当维生素C缺乏时,胶原和细胞间质合成障碍,毛细管壁脆性增大,通透性增强,轻微创伤或压力即可使毛细血管破裂,引起出血现象,临床上称为坏血病(scurvy)。
2.类固醇的羟化
正常情况下,体内胆固醇约有80%转变为胆酸后排出,在胆固醇转变为胆酸前,需先将环状部分羟化(7α羟化 作用,参看胆固醇代谢),而后侧链断裂,最终生成胆酸,缺乏维生素C则此种羟化过程受阻,胆固醇转变成胆酸的作用下降,肝中胆固醇堆积,而血中胆固醇浓度 增高。因此,临床上用大量维生素C可降低血中胆固醇,其机理可能在于维生素C促进胆固醇向胆酸转变。
此外,肾上腺皮质激素合成加强时,皮质中维生素C含量显著下降,这可能是皮质激素合成过程中某些羟化步骤需消耗维生素C。3.芳香族氨基酸的羟化
苯丙氨酸(Phe)羟化为酪氨酸(Tyr),酪氨酸转变为儿茶酚胺(catecholamine)或分解为尿 黑酸等过程中许多羟化步骤均需有维生素C的参加。又如色氨酸(Trp)转变为5-羟色胺(5-HT)时也需要维生素C(参看氨基酸代谢和神经组织生化等章 节),儿茶酚胺和5-羟色胺都是重要的神经递质,它们在调节神经活动方面有重要作用。
4.有机药物或毒物的羟化
药物或毒物在内质网上的羟化过程,是重要的生物转化反应,缺乏维生素C时,此种羟化反应明显下降,药物或毒物的代谢显著减慢,给予维生素C后,催化此类羟化反应的酶系活性升高,促进药物或毒物的代谢转变,因而有增强解毒的作用(参看肝脏生化一章中生物转化作用)。
(二)还原作用
维生素C在体内作为重要的还原剂而起作用,主要有以下几个方面。
1.保护巯基和使巯基再生
已知许多含巯基的酶当其在体内发挥催化作用时需要有自由的桽H,而维生素C能使酶分子中-SH保持在还原状 态,从而保持酶有一定的活性,维生素C还可使氧化型的谷光甘肽(G-S-S-G)还原为还原型的谷胱甘肽(G-SH),使-SH得以再生,从而保证谷胱甘 肽的功能。例如不饱和脂酸易被氧化成脂性过氧化物,后者可使各种细胞膜,尤其是溶酶体膜破裂,释放出各种水解酶类,致使组织自溶,造成严重后果,还原型谷 胱甘肽在谷胱甘肽过氧化酶的催化下可使脂性过氧化物还原,从而消除其对组织细胞的破坏作用,而G-SH便氧化成G-S-S-G,在谷胱甘肽还原酶催化下, 维生素C也可使G-S-S-G还原成G-SH,从而使后者不断得到补充。
图3-6 维生素C与谷胱甘肽拉化还原反应的关系
(1):G-SH还原酶(2):G-SH过氧化酶
再如某些含巯基的酶在金属中毒(如铅中毒)时被抑制,给以大量维生素C往往可以缓解其毒性。据认为,金属离子 能与体内巯基酶类的桽H结合,使其失活,以致代谢障碍而中毒。维生素C可以将G-S-S-G还原为G-SH,后者可与金属离子结合而排出体外,所以维生素 C能保护含巯基的酶,具有解毒作用。
图3-7 维生素C解毒示意图
2.促进铁的吸收和利用
维生素C能使难吸收的Fe+++还原成易吸收的Fe++,促进铁的吸收,它还能促使体内的Fe+++还原,有利于血红素的合成。此外,维生素C还有直接还原高铁血红蛋白(MHb)的作用。
3.促进叶酸转变为四氢叶酸(见前)
由此可见,维生素C对缺铁性贫血和巨幼细胞性贫血的治疗都可起辅助作用。
4.抗体的生成
抗体分子中含有相当数量的双S键,所以抗体的合成需要足够量的半胱氨酸,体内高浓度的维生素C可以把胱氨酸还 原成半胱氨酸,有利于抗体的合成。维生素C增强机体的免疫功能不限于促进抗体的合成,它还能增强白细胞对流感病毒的反应性以及促进H2O2在粒细胞中的杀 菌作用等。
维生素P又称为通透性维生素(P代表permeability),最初由柠檬中分离出来,化学本质为黄素酮类 (flavonone),称为柠檬素(citrin)。以后又发现多种具有类似结构和活性的物质,所以维生素P不是单一的化合物,主要的维生素P类化合物 有桔皮苷、芸香苷(芦丁)及L-表儿茶素等。
维生素P的主要生理作用在于维持毛细血管壁的正常通透性,缺少它则通透性增强。因为在自然界维生素P常与维生 素C共存,故一般认为坏血病系此两种维生素共同缺乏的结果。虽然在人类尚未发现单纯缺乏维生素P的疾病,但临床上可以应用维生素P防治某些因毛细血管通透 性增强而引起的疾病。维生素P的作用机制尚未被阐明,有实验表明它有“节约”维生素C和抑制透明质酸酶(参看第17章)的作用。
营养学上较为重要的维生素有A、D、B1、B2、PP和C六种,它们的来源、需要量、生理功能和缺乏症简要总结如附表。
附表 几种与人体营养有关维生素的来源、需要量、主要功能及缺乏症
名称 来源 需要量* 主要生理功能 缺乏症 (视黄醇) 肝、蛋黄、鱼肝油、奶汁、绿叶蔬菜、胡萝卜、玉米等 3.500 I.U乳母孕妇加倍 1.与眼的暗视觉有关,是合成视紫煞费苦心质的原料2.维持上皮组织的结构完整
3.促进生长发育 夜盲症
干眼病 (钙化醇) 鱼肝油、肝、蛋黄、日光照射皮肤可制造D3 400 I.U儿童、孕妇乳母500-1000I.U 调节钙磷代谢、促进钙磷吸收 儿童:佝偻病
成人:软骨病 维生素B1
(硫胺素) 醇母、眉头、绿叶蔬菜 2mg 1.为α-酮酸氧化脱羧的辅酶TPP的成分
2.抑制胆碱酯酶的活性 脚气病
胃肠道机能障碍 (抗癞皮病因子) 肉、酵母、谷类及花生等,人体可自色氨醇转变一部分 2mg 构成黄酶的辅酶成分,参与体内生物氧化体系 口角炎、舌炎、唇炎、阴囊皮炎等 (抗坏血酸) 新鲜水果、蔬菜、特别是鲜枣、辣椒、红果、菜花、桔子等含量较高 15mg 构成脱氢酶辅酶的成分,参与生物氧化体系 癞皮病(表现为对称性皮炎、舌炎、腹泻及神经症状) 50-75mg 1.参与体内羟化反应,与细胞间质的生成、类固醇的羟化和生物转化有关
2.参与体内某些还原反应,有保护巯基酶、解毒和促抗体生成的作用 坏血病
*除特殊注明外均为正常成人每日需要量,为国际单位
上一篇:糖代谢概述
下一篇:维生素(Vitamins)-脂溶性维生素
论坛新帖
医学推广
频道本月排行
热门购物
评论排行
- 2011年临床执业医师考试实践技能真...(13)
- 腋臭手术视频(11)
- 2008年考研英语真题及参考答案(5)
- 节食挑食最伤女人的免疫系统(5)
- 核辐射的定义和单位(5)
- CKD患者Tm与IMT相关(5)
- 齐鲁医院普外科开展“喉返神经监护...(5)
- windows7激活工具WIN7 Activation v1.7(5)
- 正常微循环(5)
- 美大学性教育课来真的 男女上阵亲...(4)